Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.422
Filtrar
1.
Nat Commun ; 15(1): 2979, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582892

RESUMO

Prototypic receptors for human influenza viruses are N-glycans carrying α2,6-linked sialosides. Due to immune pressure, A/H3N2 influenza viruses have emerged with altered receptor specificities that bind α2,6-linked sialosides presented on extended N-acetyl-lactosamine (LacNAc) chains. Here, binding modes of such drifted hemagglutinin's (HAs) are examined by chemoenzymatic synthesis of N-glycans having 13C-labeled monosaccharides at strategic positions. The labeled glycans are employed in 2D STD-1H by 13C-HSQC NMR experiments to pinpoint which monosaccharides of the extended LacNAc chain engage with evolutionarily distinct HAs. The NMR data in combination with computation and mutagenesis demonstrate that mutations distal to the receptor binding domain of recent HAs create an extended binding site that accommodates with the extended LacNAc chain. A fluorine containing sialoside is used as NMR probe to derive relative binding affinities and confirms the contribution of the extended LacNAc chain for binding.


Assuntos
Vírus da Influenza A Subtipo H3N2 , Influenza Humana , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Polissacarídeos/metabolismo , Monossacarídeos/metabolismo
3.
Vaccine ; 42(9): 2220-2228, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38582606

RESUMO

The yearly epidemics and unpredictable outbreaks of influenza have raisedserious concernsglobally and led to prioritizing the development of an effective vaccine toprotectagainst newly emerging variants. Previously, we demonstrated that monoglycosylated influenza virus vaccines derived from A/California/7/2009 or an updated A/Brisbane/02/2018 (IVR-190) vaccine strain recommended by WHO are superior to fully glycosylated vaccines and could broadly protect against past and new coming H1N1 variants. However, whether such a monoglycosylated virus vaccine can be mass-produced to meet clinical demands and stable enough to provide consistent efficacy against H1N1 viruses remains unclear. Herein, we developed a platform for the pilot-scale production of the monoglycosylated split virus vaccine from the IVR-190 strain (IVR-190mg) with a robust and cost-effective manufacturing process. The critical parameters of inoculum dose, concentration of kifunensine, and optimized Endo H treatment process were comprehensively investigated. Several aims for preclinical studies of IVR-190mg were achieved, including [i] the execution of three engineering batch runs to validate lot-to-lot consistency, [ii] the establishment of IVR-190mg specifications to meet the acceptance criteria of a conventional influenza vaccine, [iii] an investigation of the stability profile of IVR-190mg, and completion of a safety evaluation by conducting an animal toxicology study. The toxicology study under GLP guidance found no systemic toxicity after rabbits were vaccinated with IVR-190mg. The serological data showed that IVR-190mg is highly immunogenic and effective in inducing a cross-strain protective level of antibody immune responses, including hemagglutination-inhibition titers, viral neutralization activity, and broad HA- and NA-inhibiting antibody titers against past and new H1N1 viruses. In conclusion, this study provides efficacy and safety profiles of IVR-190mg for further clinical study and shows that this vaccine without a glycan shield has great potential to be safe and protective against H1N1 variants.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Coelhos , Humanos , Influenza Humana/prevenção & controle , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H3N2
4.
Hum Vaccin Immunother ; 20(1): 2330770, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38602539

RESUMO

The immunogenicity and safety of the concomitant administration of recombinant COVID-19 vaccine and quadrivalent inactivated influenza vaccine (Split Virion) (QIIV) in Chinese adults are unclear. In this open-label, randomized controlled trial, participants aged ≥ 18 years were recruited. Eligible healthy adults were randomly assigned (1:1) to receive QIIV at the same time as the first dose of COVID-19 vaccine (simultaneous-group) or 14 days after the second dose of COVID-19 vaccine (non-simultaneous-group). The primary outcome was to compare the difference in immunogenicity of QIIV (H1N1, H3N2, Yamagata, and Victoria) between the two groups. A total of 299 participants were enrolled, 149 in the simultaneous-group and 150 in the non-simultaneous-group. There were no significant differences in geometric mean titer (GMT) [H1N1: 386.4 (95%CI: 299.2-499.0) vs. 497.4 (95%CI: 377.5-655.3); H3N2: 66.9 (95%CI: 56.1-79.8) vs. 81.4 (95%CI: 67.9-97.5); Yamagata: 95.6 (95%CI: 79.0-115.8) vs. 74.3 (95%CI: 58.6-94.0); and Victoria: 48.5 (95%CI: 37.6-62.6) vs. 65.8 (95%CI: 49.0-88.4)] and seroconversion rate (H1N1: 87.5% vs. 90.1%; H3N2: 58.1% vs. 62.0%; Yamagata: 75.0% vs. 64.5%; and Victoria: 55.1% vs. 62.8%) of QIIV antibodies between the simultaneous and non-simultaneous groups. For the seroprotection rate of QIIV antibodies, a higher seroprotection rate of Yamagata antibody was observed only in the simultaneous-group than in the non-simultaneous-group [86.0% vs. 76.0%, p = .040]. In addition, no significant difference in adverse events was observed between the two groups (14.2% vs. 23.5%, p = .053). In conclusion, no immune interference or safety concerns were found for concomitant administration of COVID-19 vaccine with QIIV in adults aged ≥ 18 years.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Adulto , Humanos , Vacinas contra COVID-19/efeitos adversos , COVID-19/prevenção & controle , Vírus da Influenza A Subtipo H3N2 , Vacinas contra Influenza/efeitos adversos , Anticorpos , China
5.
Sci Rep ; 14(1): 8472, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605110

RESUMO

With the lifting of COVID-19 non-pharmaceutical interventions, the resurgence of common viral respiratory infections was recorded in several countries worldwide. It facilitates viral co-infection, further burdens the already over-stretched healthcare systems. Racing to find co-infection-associated efficacy therapeutic agents need to be rapidly established. However, it has encountered numerous challenges that necessitate careful investigation. Here, we introduce a potential recombinant minibody-associated treatment, 3D8 single chain variable fragment (scFv), which has been developed as a broad-spectrum antiviral drug that acts via its nucleic acid catalytic and cell penetration abilities. In this research, we demonstrated that 3D8 scFv exerted antiviral activity simultaneously against both influenza A viruses (IAVs) and coronaviruses in three established co-infection models comprising two types of coronaviruses [beta coronavirus-human coronavirus OC43 (hCoV-OC43) and alpha coronavirus-porcine epidemic diarrhea virus (PEDV)] in Vero E6 cells, two IAVs [A/Puerto Rico/8/1934 H1N1 (H1N1/PR8) and A/X-31 (H3N2/X-31)] in MDCK cells, and a combination of coronavirus and IAV (hCoV-OC43 and adapted-H1N1) in Vero E6 cells by a statistically significant reduction in viral gene expression, proteins level, and approximately around 85%, 65%, and 80% of the progeny of 'hCoV-OC43-PEDV', 'H1N1/PR8-H3N2/X-31', and 'hCoV-OC43-adapted-H1N1', respectively, were decimated in the presence of 3D8 scFv. Taken together, we propose that 3D8 scFv is a promising broad-spectrum drug for treatment against RNA viruses in co-infection.


Assuntos
Coinfecção , Coronavirus Humano OC43 , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Anticorpos de Cadeia Única , Humanos , RNA/metabolismo , Vírus da Influenza A Subtipo H3N2 , Anticorpos de Cadeia Única/farmacologia , Anticorpos de Cadeia Única/metabolismo
6.
Arch Virol ; 169(5): 99, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625394

RESUMO

H9N2 avian influenza viruses (AIVs) affect both poultry and humans on a global level, and they are especially prevalent in Egypt. In this study, we sequenced the entire genome of AIV H9N2 isolated from chickens in Egypt in 2021, using next-generation sequencing (NGS) technology. Phylogenetic analysis of the resulting sequences showed that the studied strain was generally monophyletic and grouped within the G1 sublineage of the Eurasian lineage. Four segments (polymerase basic 2 [PB2], polymerase basic 1 [PB1], polymerase acidic [PA], and non-structural [NS]) were related to Egyptian genotype II, while the nucleoprotein (NP), neuraminidase (NA), matrix (M), and haemagglutinin (HA) segments were related to Egyptian genotype I. Molecular analysis revealed that HA protein contained amino acid residues (191H and 234L) that suggested a predilection for attaching to human-like receptors. The antigenic sites of HA had two nonsynonymous mutations: V194I at antigenic site A and M40K at antigenic site B. Furthermore, the R403W and S372A mutations, which have been observed in H3N2 and H2N2 strains that caused human pandemics, were found in the NA protein of the detected strain. The internal proteins contained virulence markers: 504V in the PB2 protein, 622G, 436Y, 207K, and 677T in the PB1 protein, 127V, 550L, and 672L in PA protein, and 64F and 69P in the M protein. These results show that the detected strain had undergone intrasubtype reassortment. Furthermore, it contains changes in the viral proteins that make it more likely to be virulent, raising a question about the tendency of AIV H9N2 to become highly pathogenic in the future for both poultry and humans.


Assuntos
Antígenos de Grupos Sanguíneos , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Humanos , Aves Domésticas , Vírus da Influenza A Subtipo H9N2/genética , Egito/epidemiologia , Galinhas , Fazendas , Vírus da Influenza A Subtipo H3N2 , Influenza Aviária/epidemiologia , Filogenia
7.
Emerg Microbes Infect ; 13(1): 2337673, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38572517

RESUMO

Influenza A viruses (IAVs) pose a persistent potential threat to human health because of the spillover from avian and swine infections. Extensive surveillance was performed in 12 cities of Guangxi, China, during 2018 and 2023. A total of 2540 samples (including 2353 nasal swabs and 187 lung tissues) were collected from 18 pig farms with outbreaks of respiratory disease. From these, 192 IAV-positive samples and 19 genomic sequences were obtained. We found that the H1 and H3 swine influenza A viruses (swIAVs) of multiple lineages and genotypes have continued to co-circulate during that time in this region. Genomic analysis revealed the Eurasian avian-like H1N1 swIAVs (G4) still remained predominant in pig populations. Strikingly, the novel multiple H3N2 genotypes were found to have been generated through the repeated introduction of the early H3N2 North American triple reassortant viruses (TR H3N2 lineage) that emerged in USA and Canada in 1998 and 2005, respectively. Notably, when the matrix gene segment derived from the H9N2 avian influenza virus was introduced into endemic swIAVs, this produced a novel quadruple reassortant H1N2 swIAV that could pose a potential risk for zoonotic infection.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H9N2 , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Suínos , Animais , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , China/epidemiologia , Doenças dos Suínos/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Influenza Humana/epidemiologia , Vírus Reordenados/genética , Filogenia
8.
Influenza Other Respir Viruses ; 18(4): e13286, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38594827

RESUMO

Antigenic drift is a major driver of viral evolution and a primary reason why influenza vaccines must be reformulated annually. Mismatch between vaccine and circulating viral strains negatively affects vaccine effectiveness and often contributes to higher rates of influenza-related hospitalizations and deaths, particularly in years dominated by A(H3N2). Several countries recommend enhanced influenza vaccines for older adults, who are at the highest risk of severe influenza complications and mortality. The immunogenicity of enhanced vaccines against heterologous A(H3N2) strains has been examined in nine studies to date. In six studies, an enhanced, licensed MF59-adjuvanted trivalent inactivated influenza vaccine (aIIV3) consistently increased heterologous antibody titers relative to standard influenza vaccine, with evidence of a broad heterologous immune response across multiple genetic clades. In one study, licensed high-dose trivalent inactivated influenza vaccine (HD-IIV3) also induced higher heterologous antibody titers than standard influenza vaccine. In a study comparing a higher dose licensed quadrivalent recombinant influenza vaccine (RIV4) with HD-IIV3 and aIIV3, no significant differences in antibody titers against a heterologous strain were observed, although seroconversion rates were higher with RIV4 versus comparators. With the unmet medical need for improved influenza vaccines, the paucity of studies especially with enhanced vaccines covering mismatched strains highlights a need for further investigation of cross-protection in older adults.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Idoso , Influenza Humana/prevenção & controle , Vírus da Influenza A Subtipo H3N2/genética , Vacinas de Produtos Inativados , Ensaios Clínicos Controlados Aleatórios como Assunto , Anticorpos Antivirais , Testes de Inibição da Hemaglutinação
9.
Antiviral Res ; 225: 105877, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561077

RESUMO

The conventional inactivated split seasonal influenza vaccine offers low efficacy, particularly in the elderly and against antigenic variants. Here, to improve the efficacy of seasonal vaccination for the elderly population, we tested whether supplementing seasonal bivalent (H1N1 + H3N2) split (S) vaccine with M2 ectodomain repeat and multi-subtype consensus neuraminidase (NA) proteins (N1 NA + N2 NA + flu B NA) on a virus-like particle (NA-M2e) would induce enhanced cross-protection against different influenza viruses in aged mice. Immunization with split vaccine plus NA-M2e (S + NA-M2e) increased vaccine-specific IgG antibodies towards T-helper type 1 responses and hemagglutination inhibition titers. Aged mice with NA-M2e supplemented vaccination were protected against homologous and heterologous viruses at higher efficacies, as evidenced by preventing weight loss, lowering lung viral loads, inducing broadly cross-protective humoral immunity, and IFN-γ+ CD4 and CD8 T cell responses than those with seasonal vaccine. Overall, this study supports a new strategy of NA-M2e supplemented vaccination to enhance protection against homologous and antigenically different viruses in the elderly.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Idoso , Humanos , Camundongos , Animais , Infecções por Orthomyxoviridae/prevenção & controle , Neuraminidase , Vírus da Influenza A Subtipo H3N2 , Estações do Ano , Anticorpos Antivirais , Proteção Cruzada , Camundongos Endogâmicos BALB C
10.
Front Cell Infect Microbiol ; 14: 1363407, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590437

RESUMO

Introduction: Influenza A virus (IAV) infection can cause the often-lethal acute respiratory distress syndrome (ARDS) of the lung. Concomitantly, acute kidney injury (AKI) is frequently noticed during IAV infection, correlating with an increased mortality. The aim of this study was to elucidate the interaction of IAV with human kidney cells and, thereby, to assess the mechanisms underlying IAV-mediated AKI. Methods: To investigate IAV effects on nephron cells we performed infectivity assays with human IAV, as well as with human isolates of either low or highly pathogenic avian IAV. Also, transcriptome and proteome analysis of IAV-infected primary human distal tubular kidney cells (DTC) was performed. Furthermore, the DTC transcriptome was compared to existing transcriptomic data from IAV-infected lung and trachea cells. Results: We demonstrate productive replication of all tested IAV strains on primary and immortalized nephron cells. Comparison of our transcriptome and proteome analysis of H1N1-type IAV-infected human primary distal tubular cells (DTC) with existing data from H1N1-type IAV-infected lung and primary trachea cells revealed enrichment of specific factors responsible for regulated cell death in primary DTC, which could be targeted by specific inhibitors. Discussion: IAV not only infects, but also productively replicates on different human nephron cells. Importantly, multi-omics analysis revealed regulated cell death as potential contributing factor for the clinically observed kidney pathology in influenza.


Assuntos
Injúria Renal Aguda , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Morte Celular Regulada , Humanos , Proteoma/metabolismo , Vírus da Influenza A Subtipo H3N2/fisiologia , Replicação Viral/fisiologia , Rim/patologia , Infecções por Orthomyxoviridae/patologia
12.
Expert Rev Vaccines ; 23(1): 380-388, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38494919

RESUMO

BACKGROUND: The question of whether influenza vaccine effectiveness (VE) wanes over the winter season is still open and some contradictory findings have been reported. This study investigated the possible decline in protection provided by the available influenza vaccines. RESEARCH DESIGN AND METHODS: An individual-level pooled analysis of six test-negative case-control studies conducted in Italy between the 2018/2019 and 2022/2023 seasons was performed. Multivariable logistic regression analyses were performed to estimate weekly change in the odds of testing positive for influenza 14 days after vaccination. RESULTS: Of 6490 patients included, 1633 tested positive for influenza. Each week that had elapsed since vaccination was associated with an increase in the odds of testing positive for any influenza (4.9%; 95% CI: 2.0-8.0%) and for A(H3N2) (6.5%; 95% CI: 2.9-10.3%). This decline in VE was, however, significant only in children and older adults. A similar increase in the odds of testing positive was seen when the dataset was restricted to vaccinees only. Conversely, VE waning was less evident for A(H1N1)pdm09 or B strains. CONCLUSIONS: Significant waning of VE, especially against influenza A(H3N2), may be one of the factors associated with suboptimal end-of-season VE. Next-generation vaccines should provide more durable protection against A(H3N2).


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Criança , Humanos , Idoso , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Estações do Ano , Vírus da Influenza A Subtipo H3N2 , Eficácia de Vacinas
13.
Front Immunol ; 15: 1334670, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533508

RESUMO

Background: The implementation of mRNA vaccines against COVID-19 has successfully validated the safety and efficacy of the platform, while at the same time revealing the potential for their applications against other infectious diseases. Traditional seasonal influenza vaccines often induce strain specific antibody responses that offer limited protection against antigenically drifted viruses, leading to reduced vaccine efficacy. Modern advances in viral surveillance and sequencing have led to the development of in-silico methodologies for generating computationally optimized broadly reactive antigens (COBRAs) to improve seasonal influenza vaccines. Methods: In this study, immunologically naïve mice were intramuscularly vaccinated with mRNA encoding H1 and H3 COBRA hemagglutinins (HA) or wild-type (WT) influenza HAs encapsulated in lipid nanoparticles (LNPs). Results: Mice vaccinated with H1 and H3 COBRA HA-encoding mRNA vaccines generated robust neutralizing serum antibody responses against more antigenically distinct contemporary and future drifted H1N1 and H3N2 influenza strains than those vaccinated with WT H1 and H3 HA-encoding mRNA vaccines. The H1 and H3 COBRA HA-encoding mRNA vaccines also prevented influenza illness, including severe disease in the mouse model against H1N1 and H3N2 viruses. Conclusions: This study highlights the potential benefits of combining universal influenza antigen design technology with modern vaccine delivery platforms and exhibits how these vaccines can be advantageous over traditional WT vaccine antigens at eliciting superior protective antibody responses against a broader number of influenza virus isolates.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Animais , Camundongos , Hemaglutininas , Vírus da Influenza A Subtipo H3N2 , Vacinas de mRNA , Vacinas contra COVID-19 , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Anticorpos Neutralizantes
14.
Vaccine ; 42(11): 2770-2780, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508930

RESUMO

The COVID-19 pandemic has highlighted the need for mucosal vaccines as breakthrough infections, short-lived immune responses and emergence of new variants have challenged the efficacy provided by the first generation of vaccines against SARS-CoV-2 viruses. M2SR SARS-CoV-2, an M2-deleted single-replication influenza virus vector modified to encode the SARS-CoV-2 receptor binding domain, was evaluated following intranasal delivery in a hamster challenge model for protection against Wuhan SARS-CoV-2. An adjuvanted inactivated SARS-CoV-2 whole virus vaccine administered intramuscularly was also evaluated. The intranasal M2SR SARS-CoV-2 was more effective than the intramuscular adjuvanted inactivated whole virus vaccine in providing protection against SARS-CoV-2 challenge. M2SR SARS-CoV-2 elicited neutralizing serum antibodies against Wuhan and Omicron SARS-CoV-2 viruses in addition to cross-reactive mucosal antibodies. Furthermore, M2SR SARS-CoV-2 generated serum HAI and mucosal antibody responses against influenza similar to an H3N2 M2SR influenza vaccine. The intranasal dual influenza/COVID M2SR SARS-CoV-2 vaccine has the potential to provide protection against both influenza and COVID.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Cricetinae , Influenza Humana/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2 , Infecções por Orthomyxoviridae/prevenção & controle , Vírus da Influenza A Subtipo H3N2 , Pandemias/prevenção & controle , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinação , Anticorpos Neutralizantes , Adjuvantes Imunológicos
15.
Public Health ; 230: 157-162, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554473

RESUMO

OBJECTIVES: To report epidemiological and virological results of an outbreak investigation of influenza-like illness (ILI) among refugees in Northern Italy. STUDY DESIGN: Outbreak investigation of ILI cases observed among nearly 100 refugees in Northern Italy unvaccinated for influenza. METHODS: An epidemiological investigation matched with a differential diagnosis was carried out for each sample collected from ILI cases to identify 10 viral pathogens (SARS-CoV-2, influenza virus type A and B, respiratory syncytial virus, metapneumovirus, parainfluenza viruses, rhinovirus, enterovirus, parechovirus, and adenovirus) by using specific real-time PCR assays according to the Centers for Disease Control and Prevention (CDC) protocols. In cases where the influenza virus type was identified, complete hemagglutinin (HA) gene sequencing and the related phylogenetic analysis were conducted. RESULTS: The outbreak was caused by influenza A(H3N2): the attack rate was 83.3% in children aged 9-14 years, 84.6% in those aged 15-24 years, and 28.6% in adults ≥25 years. Phylogenetic analyses uncovered that A(H3N2) strains were closely related since they segregated in the same cluster, showing both a high mean nucleotide identity (100%), all belonging to the genetic sub-group 3C.2a1b.2a.2, as those mainly circulating into the general population in the same period. CONCLUSIONS: The fact that influenza outbreak strains as well as the community strains were genetically related to the seasonal vaccine strain suggests that if an influenza prevention by vaccination strategy had been implemented, a lower attack rate of A(H3N2) and ILI cases might have been achieved.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Refugiados , Viroses , Adulto , Criança , Humanos , Influenza Humana/epidemiologia , Vírus da Influenza A Subtipo H3N2/genética , Filogenia , Surtos de Doenças
16.
Microbiol Spectr ; 12(4): e0218123, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38446039

RESUMO

Novel H1N2 and H3N2 swine influenza A viruses (IAVs) have recently been identified in Chile. The objective of this study was to evaluate their zoonotic potential. We perform phylogenetic analyses to determine the genetic origin and evolution of these viruses, and a serological analysis to determine the level of cross-protective antibodies in the human population. Eight genotypes were identified, all with pandemic H1N1 2009-like internal genes. H1N1 and H1N2 were the subtypes more commonly detected. Swine H1N2 and H3N2 IAVs had hemagglutinin and neuraminidase lineages genetically divergent from IAVs reported worldwide, including human vaccine strains. These genes originated from human seasonal viruses were introduced into the swine population since the mid-1980s. Serological data indicate that the general population is susceptible to the H3N2 virus and that elderly and young children also lack protective antibodies against the H1N2 strains, suggesting that these viruses could be potential zoonotic threats. Continuous IAV surveillance and monitoring of the swine and human populations is strongly recommended.IMPORTANCEIn the global context, where swine serve as crucial intermediate hosts for influenza A viruses (IAVs), this study addresses the pressing concern of the zoonotic potential of novel reassortant strains. Conducted on a large scale in Chile, it presents a comprehensive account of swine influenza A virus diversity, covering 93.8% of the country's industrialized swine farms. The findings reveal eight distinct swine IAV genotypes, all carrying a complete internal gene cassette of pandemic H1N1 2009 origin, emphasizing potential increased replication and transmission fitness. Genetic divergence of H1N2 and H3N2 IAVs from globally reported strains raises alarms, with evidence suggesting introductions from human seasonal viruses since the mid-1980s. A detailed serological analysis underscores the zoonotic threat, indicating susceptibility in the general population to swine H3N2 and a lack of protective antibodies in vulnerable demographics. These data highlight the importance of continuous surveillance, providing crucial insights for global health organizations.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Criança , Humanos , Animais , Suínos , Pré-Escolar , Idoso , Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H3N2/genética , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Vírus da Influenza A Subtipo H1N1/genética , Filogenia , Chile/epidemiologia , Vírus Reordenados/genética , Doenças dos Suínos/epidemiologia , Influenza Humana/epidemiologia
17.
Antiviral Res ; 224: 105853, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430970

RESUMO

While clinical trials have illuminated both the virological and clinical efficacy of baloxavir for influenza and post-treatment viral resistance, these aspects warrant further study in real-world settings. In response, we executed a prospective, observational study of the Japanese 2022-2023 influenza season. A cohort of 73 A(H3N2)-diagnosed outpatients-36 treated with baloxavir, 20 with oseltamivir, and 17 with other neuraminidase inhibitors (NAIs)-were analyzed. Viral samples were collected before and after administering an antiviral on days 1, 5, and 10, respectively. Cultured viruses were amplified using RT-PCR and sequenced to detect mutations. Fever and other symptoms were tracked via self-reporting diaries. In the baloxavir cohort, viral detection was 11.1% (4/36) and 0% (0/36) on day 5 and day 10, respectively. Two isolates from day 5 (5.6%, 2/36) manifested I38T/M-substitutions in the polymerase acidic protein (PA). For oseltamivir and other NAIs, viral detection rates were 60.0% (12/20) and 52.9% (9/17) on day 5, and 16.7% (3/18) and 6.3% (1/16) on day 10, respectively. No oseltamivir-resistant neuraminidase mutations were identified after treatment. Median fever durations for the baloxavir, oseltamivir, and other NAI cohorts were 27.0, 38.0, and 36.0 h, respectively, with no significant difference. Two patients harboring PA I38T/M-substitutions did not exhibit prolonged fever or other symptoms. These findings affirm baloxavir's virological and clinical effectiveness against A(H3N2) in the 2022-2023 season and suggest limited clinical influence of post-treatment resistance emergence.


Assuntos
Dibenzotiepinas , Influenza Humana , Morfolinas , Triazinas , Humanos , Influenza Humana/tratamento farmacológico , Oseltamivir/uso terapêutico , Oseltamivir/farmacologia , Neuraminidase/genética , Neuraminidase/uso terapêutico , Vírus da Influenza A Subtipo H3N2/genética , Pacientes Ambulatoriais , Estações do Ano , Estudos Prospectivos , Antivirais/uso terapêutico , Antivirais/farmacologia , Piridonas/uso terapêutico , Inibidores Enzimáticos/farmacologia , Guanidinas/farmacologia , Febre/tratamento farmacológico
18.
Immunity ; 57(3): 574-586.e7, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38430907

RESUMO

Continuously evolving influenza viruses cause seasonal epidemics and pose global pandemic threats. Although viral neuraminidase (NA) is an effective drug and vaccine target, our understanding of the NA antigenic landscape still remains incomplete. Here, we describe NA-specific human antibodies that target the underside of the NA globular head domain, inhibit viral propagation of a wide range of human H3N2, swine-origin variant H3N2, and H2N2 viruses, and confer both pre- and post-exposure protection against lethal H3N2 infection in mice. Cryo-EM structures of two such antibodies in complex with NA reveal non-overlapping epitopes covering the underside of the NA head. These sites are highly conserved among N2 NAs yet inaccessible unless the NA head tilts or dissociates. Our findings help guide the development of effective countermeasures against ever-changing influenza viruses by identifying hidden conserved sites of vulnerability on the NA underside.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Animais , Camundongos , Suínos , Proteínas Virais/genética , Neuraminidase , Vírus da Influenza A Subtipo H3N2 , Anticorpos Monoclonais , Anticorpos Antivirais
19.
Hum Vaccin Immunother ; 20(1): 2327736, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38513689

RESUMO

The objective of the study was to assess the safety and immunogenicity of mRNA-1273 COVID-19 booster vaccination when co-administered with an egg-based standard dose seasonal quadrivalent influenza vaccine (QIV). This was a phase 3, randomized, open-label study. Eligible adults aged ≥ 18 years were randomly assigned (1:1) to receive mRNA-1273 (50 µg) booster vaccination and QIV 2 weeks apart (Seq group) or concomitantly (Coad group). Primary objectives were non-inferiority of haemagglutinin inhibition (HI) and anti-Spike protein antibody responses in the Coad compared to Seq group. 497/498 participants were randomized and vaccinated in the Seq/Coad groups, respectively. The adjusted geometric mean titer/concentration ratios (95% confidence intervals) (Seq/Coad) for HI antibodies were 1.02 (0.89-1.18) for A/H1N1, 0.93 (0.82-1.05) for A/H3N2, 1.00 (0.89-1.14] for B/Victoria, and 1.04 (0.93-1.17) for B/Yamagata; and 0.98 (0.84-1.13) for anti-Spike antibodies, thus meeting the protocol-specified non-inferiority criteria. The most frequently reported adverse events in both groups were pain at the injection site and myalgia. The 2 groups were similar in terms of the overall frequency, intensity, and duration of adverse events. In conclusion, co-administration of mRNA-1273 booster vaccine with QIV in adults was immunologically non-inferior to sequential administration. Safety and reactogenicity profiles were similar in both groups (clinicaltrials.gov NCT05047770).


What is the context? Updated booster shots against COVID-19 disease are likely to offer more protection as the virus is changing over time.It is important for doctors, other healthcare providers and patients to know whether COVID-19 booster vaccines can be given at the same time as other vaccines recommended for adults.What is new? The results of our study showed that an mRNA-based COVID-19 booster vaccine could be given at the same time as the seasonal influenza vaccine.When given together, both vaccines led to immune responses and had side effects that were similar to those observed when they were given at separate times.What is the impact? The potential benefits of administering more than 1 vaccine during a healthcare visit include improved coverage and a reduced number of doctor visits needed to receive all vaccines.Co-administration of COVID-19 booster vaccines and influenza vaccines could be an attractive option for patients and healthcare professionals.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Doença Pulmonar Obstrutiva Crônica , Adulto , Humanos , Influenza Humana/prevenção & controle , Vacina de mRNA-1273 contra 2019-nCoV , Vírus da Influenza B , Vírus da Influenza A Subtipo H3N2 , Vacinas contra COVID-19/efeitos adversos , Estações do Ano , Anticorpos Antivirais , Vacinas de Produtos Inativados , Testes de Inibição da Hemaglutinação , COVID-19/prevenção & controle , Imunogenicidade da Vacina
20.
Virol J ; 21(1): 57, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448981

RESUMO

BACKGROUND: Non-pharmaceutical interventions implemented during the COVID-19 pandemic resulted in a marked reduction in influenza infections globally. The absence of influenza has raised concerns of waning immunity, and potentially more severe influenza seasons after the pandemic. METHODS: To evaluate immunity towards influenza post-COVID-19 pandemic we have assessed influenza A epidemics in Norway from October 2016 to June 2023 and measured antibodies against circulating strains of influenza A(H1N1)pdm09 and A(H3N2) in different age groups by hemagglutination inhibition (HAI) assays in a total of 3364 serum samples collected in 2019, 2021, 2022 and 2023. RESULTS: Influenza epidemics in Norway from October 2016 until June 2023 were predominately influenza As, with a mixture of A(H1N1)pdm09 and A(H3N2) subtype predominance. We did not observe higher numbers of infections during the influenza epidemics following the COVID-19 pandemic than in pre-COVID-19 seasons. Frequencies of protective HAI titers against A(H1N1)pdm09 and A(H3N2) viruses were reduced in sera collected in 2021 and 2022, compared to sera collected in 2019. The reduction could, however, largely be explained by antigenic drift of new virus strains, as protective HAI titers remained stable against the same strain from one season to the next. However, we observed the development of an immunity gap in the youngest children during the pandemic which resulted in a prominent reduction in HAI titers against A(H1N1)pdm09 in 2021 and 2022. The immunity gap was partially closed in sera collected in 2023 following the A(H1N1)pdm09-dominated influenza seasons of 2022/2023. During the 2022/2023 epidemic, drift variants of A(H1N1)pdm09 belonging to the 5a.2a.1 clade emerged, and pre-season HAI titers were significantly lower against this clade compared to the ancestral 5a.2 clade. CONCLUSION: The observed reduction in protective antibodies against A(H1N1)pdm09 and A(H3N2) viruses post COVID-19 is best explained by antigenic drift of emerging viruses, and not waning of antibody responses in the general population. However, the absence of influenza during the pandemic resulted in an immunity gap in the youngest children. While this immunity gap was partially closed following the 2022/2023 influenza season, children with elevated risk of severe infection should be prioritized for vaccination.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Criança , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Estudos Transversais , Deriva e Deslocamento Antigênicos , Vírus da Influenza A Subtipo H3N2 , COVID-19/epidemiologia , Pandemias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...